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Abstract. The flux across resistive irregular interfaces driven by a force deriving from a Laplacian potential
is computed on a rigorous basis. The theory permits one to relate the size of the active zone Aact. to the
derivative of the spectroscopic impedance Zgpect.(r) with respect to the surface resistivity r through:
d(Zspect.)/dr = A7} . Tt is shown that the macroscopic transfer properties through a system of arbitrary
shape are determined by the characteristics of a first-passage interface-interface random walk operator.
More precisely, it is the distribution of the harmonic measure (or normalized primary current) on the
eigenmodes of this linear operator that controls the transfer. In addition, it is also shown that, whatever
the dimension, the impedance of a weakly polarizable electrode for any irregular geometry scales under
a homothety transformation as L?~!, L being the size of the system and d its topological dimension. In
this new formalism, the question addressed in the title is transformed in a open mathematical question:
“Knowing the distribution of the harmonic measure on the eigenmodes of the self-transport operator, can
one retrieve the shape of the interface?”

PACS. 05.40.4+j Fluctuation phenomena, random processes, and Brownian motion — 61.43.Hv Fractals;
macroscopic aggregates (including diffusion-limited aggregates) — 41.20.Cv Electrostatics; Poisson and

Laplace equations, boundary-value problems

1 Introduction

The problem of transfer across irregular interfaces driven
by Laplacian fields is a fundamental theoretical frame for
systems in many different fields (electrochemistry, hetero-
geneous catalysis, NMR relaxation in porous media, trans-
fer across biological membranes, ...). This problem can be
stated in two ways: first, measuring the geometry and the
transport parameters, can one compute the net flux across
the system? Second, knowing the net flux across the sys-
tem, can one retrieve the shape of the working interface?

In the work described in the preceding paper [1], a first
answer to this question has been given. By transforming
it in a purely mathematical problem named “problem I”.
In the present paper, a rigorous formulation of the Lapla-
cian transfer is achieved, based on the exact correspon-
dence between the electrode problem and a steady-state
diffusion problem in the same geometry. This theory will
lead us to formulate another mathematical problem, called
“problem II”.

The exact correspondence is illustrated in Figure 1
[2,3]. In the case of current through an electrochemical
interface, the response is governed by the resistivity p
of the electrolyte and by the interface resistivity r. The
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transport equation in the volume away from the surface is
J = —VV/p, where J is the vector current in the elec-
trolyte and the electric potential V' obeys the Laplace
equation AV = 0 in the bulk of the electrolyte. Due to
charge conservation, the boundary condition is obtained
by stating that the normal current j, coming from the
bulk of the solution (—V,V/p), is equal to the current
V/r crossing the electrode surface.

This problem is mathematically equivalent to the stu-
dy of bulk and membrane diffusion in the same geom-
etry. In this case, the flux of a neutral species across a
membrane is limited both by the diffusion from the source
and the finite rate of transfer across the membrane. The
transport process can be described in terms of the vec-
tor flux @ at coordinate x. There are two flux processes
in our system. First, there is bulk diffusion which obeys
Fick’s law, @ = —DVC(C, where C' is the concentration of
the particles of interest and D the diffusion coefficient.
Secondly, there is a transfer equation across the mem-
brane which obeys the equation ¢, = —WC, where W is
the probability per unit time, surface, and concentration
for a particle to cross the membrane. In the last equa-
tion, we have neglected back transfer, supposing that the
concentration on the other side of the membrane is kept
equal to zero. The conservation of the normal flux at the
frontier can be written C/V,C = D/W = A. In
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Absorbing membrane
with finite permeability

diffusing particle

/

Fig. 1. Equivalence between electric and diffusion equations:
the probability for a diffusing particle to be absorbed on a
partially absorbing boundary (upper figure) is given by the
solution of the Laplace equation on the same geometry with
mixed boundary conditions on the absorbing boundary.

the steady state, the concentration satisfies the stationary
diffusion equation AC' = 0. These equations are exactly
equivalent to the current and potential equations provided
that we exchange @ for J, —VC for —VV, D for p~! and
W for r—1. Then it is possible to define a diffusion im-
pedance Zp of the cell by a relation between the total
flux ¥ and the constant concentration Cs on the source:
U =Cs/Zp.

2 General formulation

The diffusion equivalence is now used to calculate the im-
pedance of the polarizable electrode. The following discus-
sion is inspired by the papers of Halsey and Leibig, Ball,
and Ruis-Estrada et al. [4-6]. The process is described
schematically in Figure 2. We consider particles diffusing
in a d-dimensional medium (over a simple hypercubic lat-
tice) from a flat counter electrode called S (the Source) to
an irregular working interface called M (the Membrane),
so that we can approximate their trajectories with ran-
dom walks. The interface here has a topological dimension
equal to d — 1 (d = 2 in Fig. 2).

In our picture, particles jump at random on the lattice
with parameter a and at a hopping rate of one event per
unit time 7. The concentration on the source Cj is related
to the site occupation probability on the source ps by

O, = %- 1)
If a random walker attempts to step onto a site j belonging
to the working electrode, the walk is terminated with a
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Fig. 2. Schematic representation of the lattice diffusion that
we compute.

probability o (the absorption or sticking probability) or is
reflected with a probability e = 1 — ¢. If the source S is
modelized as a set of s starting sites and the membrane
M as a set of m arrival sites, two sets of probabilities can
be defined:

e p;; = probability to land at first hit on site j of the
working electrode M (membrane with m sites) when
starting from site ¢ of the counter electrode (source
with s sites), (1<i<s,1<j<m).

e ¢ = probability to land at first hit on site k£ of the
working electrode when starting from site j of the
working electrode without touching to the counter elec-
trode. (1<j<m,1<k<m).

Due to the reversibility property of the random walks,
the probability to go from any site i to any site j is equal
to the probability to go from site j to site i. Especially,
95k = qkj-

The general trajectory of a particle starting from S
and being finally absorbed anywhere on M can then be
described by the following successive events (Fig. 3):

— going from 7 on S to j on M with probability p;;,

— either being absorbed on j on M: probability 1 —¢
(end of the walk),

— or if not absorbed (probability ¢), going from j to k
on M without coming back to S: probability g

— again either being absorbed on k£ on M: probability
1 — € (end of the walk),

— or if not absorbed, etc.

If the hopping rate equals to 1/7 and if the sticking
probability is equal to 1, the total flux can be written as:

> i (2)

i€S, jeEM

csa?

Po=1) =
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Fig. 3. Iterative process for a particle starting from the counter
electrode S and being absorbed on the working electrode M
after several reflections of probability €.

The probability for a particle starting anywhere on the
counter electrode to land at first hit on site j of the work-
ing electrode can be written:

Py = pij- 3)
€S

A closing relation between the probabilities (Fp ;) and
(gjx) can also be written: for every site j on the electrode
M, a random walker starting from j has to land either on
M or on S. This can be translated into:

VieM, P+ Y qk=1 (4)
keM

For e =0 (or o = 1), the total flux is:

d
Cs csa Z
@ = O = —— = P o . 5

(E ) Zcell(€ = 0) T j 07 ( )

This equation gives the value of the bulk admittance
Ry = Zcell(())'

When the sticking probability smaller than 1, a parti-
cle starting from the counter electrode will contribute to
the total flux if it is absorbed with probability o = (1 —¢)
at one of its collisions on the working electrode.

For a particle starting anywhere on the counter elec-
trode, the probability of being absorbed on site j at first
contact is Py ; (1—¢). The probability of being absorbed on
site j after exactly one reflection anywhere on the working
electrode can be written as:

Z P()’kf:‘qkj (1 — 6).

keM
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More generally, the probability for a particle to be ab-
sorbed after exactly n reflections on the working elec-
trode is:

E : PO,klf‘:lekz € - Qkp_1kn€qknj (1 - 5)'
ki, kn

Thus, the total probability P. ; of being finally absorbed
at site j is the sum of the probabilities to be absorbed

after 0, 1, ..., n, ... reflections on the electrode:
(o]
PEJ = Z Z P07k15q1c1,k25 PN qkn_lknfiqknj(l — 8).
n=0kq,....kn

(6)

Using these probabilities which represent the contribution
of each site to the flux across the working electrode, the
total flux of particles from S to M can be written as:

> P (7)

J

d

Cs csQ
@ — 1 — = —
(U €> Zcell(g) T

where these P ; represent the probabilities for a particle
starting anywhere on the source to be finally absorbed
on the working electrode, taking into account possible
rebounds on the working electrode with probability €.

A new vectorial formalism is now introduced: one de-
fines a m-vector Pg as (P j)(1<j<m), and a m x m matrix
Q as (gjk)(1<j<m,1<k<m)- A remarkable property of this
matrix (or operator) @ is that it is positive and symmet-
rical, due to properties of random walks: the probability
to reach site k when starting from site j is the same as the

probability to reach j when starting from &, and is never

negative. Defining 1 as the m-vector (11...1) allows us to
—_———

m times
rewrite equation (4) as:

Py = (I-Q)L. (8)
Equation (6) can now be expressed in a vectorial way:
P.=(1-¢) (Z en é”) Po. (9)
n=0

One introduce another symmetrical operator, called TE,
which links P. to Py. This operator is:
T. = (1—e)(I Q). (10)

The total flux can finally be expressed as a scalar
product [7]:

d
1:csa

Pe) = —— P (T.Pg) - 1. (11)

In the case of absorption at first hit (¢ = 0), the operator
Ty is simply the identity operator (Tp = I) and P.(= Py)

represents the landing probabilities on the working elec-
trode. It is proportional to the current densities flowing
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through the working electrode with Dirichlet boundary
condition (also called the primary current distribution in
electrochemistry).

In the general case (¢ > 0), the vector P, = T.Py
can be interpreted as the current densities with reflection
probability equal to €. This is defined in electrochemistry
as the secondary current distribution.

The behavior of the system is then characterized by the
symmetrical positive (m x m) matrix @, which represents
the transport probabilities from M to M through the bulk
medium without any intermediate collision on M. It can
then be called the self-transport operator of M. In this
picture, T. would be a screening operator, transforming
the “initial” landing probabilities Py into P..

3 Spectroscopic impedance

From &,-1_. and ¢,-1, one can compute the spectrosco-
pic impedance Zgpect.(€), defined in the previous paper
as the difference between the total impedance of the cell
with reflection probability ¢ and the impedance of the cell
when the electrode is purely absorbing (¢ = 0) [1]. It is
expressed as

Zspect.(g) - Zcell({‘:) - ROv (12)
or, using the probability vectors Py and P.:
T 1 1
Zoad =5 (5rg - m3) 09

At this stage, it is convenient to notice the following iden-
tity, using equation (8) and the expression of T, given in
equation (10):

(Po—P.)-1=¢((I - Q) ~Q)'Py) - 1

€
= P. - Py).
1—6( = Po)

(14)

Using this, we deduce the value of the electrode impe-
dance:

_L 3 PE'PO
S all—e(P.-1)(Py-1)

Zspect.(g) (15)
“Normalized” probabilities Py . are now introduced: they
are proportional to the probabilities P. with the following
normalization condition:

Y Pyejatl=a" Py 1) =1 (16)
J
In other words, the probability vector
P.
Pye=—F—+7"7~———— 17
N,E adil(PE . 1) ( )

is now used instead of P.. Py is normalized in the same
way. Using these normalized probabilities, the spectrosco-
pic impedance takes the very simple form:

T £

Zspect.(€) = (‘

(18)

Py.-P d=1,
al—s)( N,e N,O)a
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The first term, enclosed in parenthesis, can be interpreted
as a surface resistivity, called r (see appendix A), lead-
ing to:

Zspect.(g) =T (PN,E : PN,O) ad_l' (19)
Taking the continuum limit situation and calling ds the
elementary surface on the working electrode M, one finally
gets:

Zspect.(€) =T /M Pn o(z) Py e(z)ds. (20)

4 Heat impedance

The same theory permits one to calculate the heat impe-
dance (Zpeat) as defined in the previous paper [1]. It rep-
resents the energy dissipation of the current flow through
the electrode:

. T € _
Zheat:/rjﬁds:z (51—5>P]%]’5’jad 1
J

Zheat = T(PN,E : PN,(—:)ad_1~

(21)

(22)

By comparison with equation (19), one can notice that the
difference between the spectroscopic impedance and the
heat impedance is simply obtained by changing Py in
equation (19) into Py . in equation (22). The square norm
of Pn. can be computed by considering the derivative
of P.:

~ 2
oP ~ ~ T. -1
c=(Q-D{I—-eQ) *Py=—|—= 1 (23
8E<Q><s@>o<€> (23)
and then using that (I — TE) 1= 1 is e
oP.-1) -1 5
_ P_|2. 24
= s IR (21)
Putting this relation in equation (22) yields:
0 T
Zheat =€l —)=— | /== |- 2
hear = (1= )5 (ad(PE-l)) (25)

Finally, this equation can be expressed in terms of the
surface permeability 7—! by using the relation between
microscopic and macroscopic parameters (see Eq. (60) in
Appendix A), leading to a remarkably simple result:

d
T (Zspect.)-

dr (26)

Zheat =T
Note that this result is valid whatever the topological di-
mension of the working electrode. In the special situation
where the electrode impedance follows a linear law of the
surface resistivity, the heat impedance and the spectrosco-
pic impedance are equal.
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Several conclusions can be drawn from this result. First
the measurement of the spectroscopic impedance — the
experimentally accessible quantity — gives the heat im-
pedance. In terms of the active surface called Aact. heat,
Zheat Can be written as r/Aact. heat, and then from
equation (26):

d 1

a (ZSPect.) = (27)

Aact.,heat

This shows that measurement of the spectroscopic impe-
dance Zgpect. gives access to the heat active surface. This
result is general, whatever the geometry, the topological
dimension and the regime under consideration.

The derivative of the spectroscopic impedance Zgpecs.
is then equal to (Aact,’heat)’l, which means that, as long
as the spectroscopic impedance increases linearly with the
surface resistivity, the effective active surface on the mem-
brane remains constant, and both spectroscopic and heat
impedances are equal.

When an increase of the surface resistivity induces an
increase of the effective active surface, both impedances
are different. This is due to an increase of the energy dis-
sipation in the bulk, corresponding to the reorganization
of the access current lines. The spectroscopic impedance
is then greater than the heat impedance, until the surface
resistivity reaches the point where the effective active sur-
face is equal to the total surface of the membrane. From
this point on, the heat impedance catches up with the
spectroscopic impedance, and we find back the classical
law of equation (44).

For all regimes, the energy dissipation in the bulk of
the cell and in the working electrode can thus be deduced
from the simple measurement of the total impedance of
the cell:

Zheat = rdTZSpect, =7r dT(ZCeH) (28)
e

ZE = Zoent = Zhear = —77d; <_H) L (29
T

In the particular case where the spectroscopic impedance
follows a power law of the surface resistivity (such as
Zspect. = K 17), equation (26) tells us that:

Zheat - 'YKTA{ - ’)/Zspect.' (30)
The effective active surface Aact. heat then follows a power
law of the surface resistivity with exponent (1 —~). More-
over, we can deduce from this equation that the ratio
of the energy dissipation between the interface and the
bulk is ~.

5 Influence of the distance of the counter
electrode

Up to now, all the calculations were carried for a fixed fi-
nite dlstance between the working electrode and the coun-
ter electrode. Thus, the operators Q and T57 and the vec-
tors P, and Py, depend in principle on this distance,
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along with the impedances Zgpect.(¢) and Zpeat(e). Nu-
merical computations have shown that, in fact, these im-
pedances are approximately independent of the distance
0 between the electrodes, as soon as it is larger than the
smallest feature of the working electrode [1]. This can be
seen in the theoretical expressions of equations (19, 22)
which depend only on the normalized distributions.

In this limit, @} tends to an “intrinsic self transport

operator” éivm, and distributions Py ¢ and Py tend to
finite values that can be called intrinsic primary and sec-
ondary current distributions, P and Pt

P.
Jm e, 1) (31)

Pmt
These quantities depend only on the working electrode
topology. Note that Pt is also often called the harmonic
measure of the working electrode M.

An interesting property of the intrinsic situation (in-
finite distance) is that Pi"® can be derived from P by
a linear transformation (this is not true with normalized
distributions for finite d). It comes from the fact that the
ratio (P -1)/(Po - 1) goes to 1 when ¢ goes to infinity.

Indeed, writing T as:

T=I-e(l-Q)'(I-Q) (32)

leads to:
P. . 1=Py-1-Py- (5 (- sé)*lP()). (33)

Thus, when the distance between both electrodes becomes
infinite, (Py-1) and (P.-1) are equivalent, since the second

term in the right hand side varies as ||Pg||?. The resulting
identity
P.-1
li = 34
AP 1 (34

implies that a linear operator transforms P into Pint.
This operator is given by:

lim (1—¢)(I —eQ)*=(1 — &)(I — eQint) " =Tint,
§—00
(35)
This can be summed up in the following picture
normalize 0 — o0

PO — PN70 — Piont

{ i | non linear 1 jf“el\n/t

PE — IDN75 N Pignt

In this frame, one can then define intrinsic impedances
int n
Z spect. and Zheat as:

Ziter, = (P Pt (36)
Zity = (P PRt (37)
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Furthermore, the relation established in equation (26) still
holds:
Z}ilnt r i ( Zint )

eat — d7‘ spect.

(38)

6 The low resistivity regime or weakly
polarizable electrode

For a low surface resistivity, the reflection probability goes
to zero (¢ — 0 and P. — Py). Equation (19) becomes:

Zspect.(€) = 1 HPN,OH2 atl=r ZPI%/,j a® . (39)
J

Taking the continuum limit situation we obtain:

Zupeer. () = 1 / P2(2) ds. (40)
M

Extending the concept of active length developed in the

previous paper to rough surfaces embedded in d dimen-

sion cells, one defines an active surface for the dissipation

Aact.,heat by:
-1
Aact.,heat = |:/ P]%/' dA:| .

One then finds Aact. heat = 7/Zspect. in this regime, as
verified in the previous paper for 2d electrodes.

If one applies a dilation transformation x — Iz
to all lengths, the landing probabilities Py(x) trans-
form into Py(z)/I" d=1 from the normalization condition.
Then from equation (41), Aact. heat is transformed into
Fd_lAact.7heat, that is Aact. heat transforms like the power
(d — 1) of the electrode diameter. This generalizes the
Makarov result in the restricted sense used here. Namely,
the active zone of a rough surface has a size which is pro-
portional to the power (d — 1) of the electrode diameter
under a dilation transformation [8,9].

Though this result could seem obvious, one should re-
mind that in the case of an irregular electrode similar to
a “nailboard” (with a finite number of singularities), it
means that the active zone cannot be only reduced to the
singularities (the tips of the nails), as it would remain
constant under a dilation transformation and not scale
with 741,

(41)

7 The high resistivity regime or strongly
polarizable electrode

In this limit (¢ — 1 or 0 — 0), the flux decreases and
the spectroscopic impedance increases to infinity. The
operator T. can be approximated by o(I — Q)~!, and
the secondary current distribution P. deduced by using
equation (8):

P.=T.Po~oc (I-Q) ' Py=oc1. (42)
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The spectroscopic impedance becomes in this case:

T 1 T 1

Yl 1-1) G

Zspect.(g) E (mad—l)

The expression enclosed in parentheses in the upper equa-
tion is simply the number of sites of the working electrode
multiplied by the elementary surface a®': it is the total
surface Aoge of the working electrode. We then find back
the classical expression of the electrode impedance at high
resistivity whatever its shape:

r

Aode . (44)

Zspect. =

8 Link with the Land Surveyor Method

In order to understand the previous calculations in terms
of the Land Surveyor Method (LSM) presented in the pre-
vious paper [1], the system is now supposed to be consti-
tuted of a 2D medium embedded within two electrodes,
one rough and one flat. Its thickness in the third dimen-
sion is called b. The value of the spectroscopic impedance
comes directly from equation (19):

Zspect. = %(PN,E . PN,O) a. (45)
According to our “brutal” interpretation of the Makarov’s
theorem, the length of the active zone, for the primary
current distribution, is roughly equal to the diameter of
the structure L. In this approximation, the normalized
primary current distribution Py o can be written:

X

where the number of non-zero components is equal to L/a.
The spectroscopic impedance of the electrode for any
finite surface resistivity is then:

rL1
Zspect. = ggz< N,E,j>a~

1 1
PN,0:<07"';_"';07"' - (46)

L7 7L7"

(47)

This expression can be compared to that obtained in
equation (17) of the previous paper [1], based on the LSM
approximation:

r
b

This gives the mean value of the probability to be finally
absorbed on a site of the active zone:

4 <Lc> . 1 <Lc>
e =T TR

(Le)

(Pes) =% (48)

(49)

Or, using the harmonic mean of the “local” Dirichlet
screening factor (S)y (Eq. (22) in [1]) in the continuous
limit:

11 1 (L
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In the LSM, a particle hitting a site on the working elec-
trode will explore a region of perimeter A = r/p before
being finally absorbed. Here, the transformation of the
normalized primary current distribution Py o into the sec-
ondary current distribution Py . can then be roughly in-
terpreted as a “broadening” operation.

9 Spectral expansion

The expression for the electrode impedance (Eq. (19)) al-
lows us to predict rigorously the behavior of the cell, not
only in the limiting regimes of very low or very high sur-
face resistivity, but also in the general regime where the
parameter A = r/p is of the same order of magnitude as
the geometrical irregularities of the membrane. Neverthe-
less, it requires complete knowledge of the self-transport
operator Q.

We will now devise a new formulation for the spectro-
scopic impedance depending on the spectrum (distribu-

tion of eigenvalues) of the operator @, leading to a new
understanding of the membrane behavior. Let us first ex-
amine the expression for the intrinsic spectroscopic impe-
dance found in equation (36):

Zint

spect.

(¢) = (P Py !

=ra?"! PiNt. (@Pg‘t) . (51)

As é‘vm is a positive symmetrical operator, it can be
diagonalized: let us call (¢a)i<a<m its eigenvalues and

(Ca)1<a<m the decomposition coefficients of P on its
eigenvectors a:

Co =PI . a. (52)

The scalar product Pt (Tng})m) can then be rewritten

in the Q"*-eigenmodes representation:

m
) — 1
Pyt (TRPET) =) (1 _EZ )Ci.

a=1

(53)

Taking the continuous limit is done by transforming the
collection of coefficients (C2 a?~1!) for each eigenvalue into
a continuous distribution C?(q)dg:

; L/r1—e¢
int o 2
Zspect.(g) - T[I <1 _ sq) C (Q) dgv

C?(q) dgq plays here the role of a measure on the eigenval-

(54)

ues of operator Q™ and could be called a @-spectml de-
composition of the harmonic measure. Using equation (26)
€
and the relation r = Zl—, a same formulation can be
al—e
derived for the heat impedance:

e =r [ (= )20@2 aa

_1\1—¢gq

(55)
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These are general intrinsic expressions for the spectrosco-
pic and heat impedance of the electrode in front of a semi-
infinite bulk. It stands for any value of the reflection prob-
ability (or surface resistivity), any shape of the irregular
electrode and any topological dimension d. It only requires
the knowledge of the spectral behavior of the self-transport
of the working electrode in front of a semi-infinite bulk and
of the decomposition coefficients of the primary current
distribution on the self-transport modes.

10 Conclusions

General theoretical expressions for both spectroscopic and
heat impedances of the working electrode have been de-
rived from a simple microscopic diffusive model. These ex-
pressions are valid whatever the shape of the interface or
its topological dimensional. This work shows that all the
properties of Laplacian transfer across a linear interface
are ruled by the spectral properties of its self-transport
operator @), and more precisely, on the decomposition of
the primary current distribution (harmonic measure) on
the eigenmodes of this operator.

A simple differential relation between the spectrosco-
pic and the heat impedances has been proved (and verified
on numerical simulations in the previous paper [1]).

It has also been shown that intrinsic expressions of
impedances can be defined. They are independent of the
height of the cell, and take only into account the working
electrode topography. The physical question addressed in
the title is then transformed into the following mathe-
matical problem, which is called “problem II”: “Can one
determine the shape of an object from the Q-spectral de-
composition of its harmonic measure?”

To our knowledge, the answer to this question is open.
Also remains the question of the possible links between
“problem I” and “problem II”.

The authors wish to acknowledge useful discussions with R.
Ball, W. Dieterich, Th. Halsey, P. Jones, N. Makarov, B. Man-
delbrot, J. Peyriere, P. Pfeifer and M. Rosso. This research
was supported by N.A.T.O. grant C.R.G. 900483. The Labora-
toire de Physique de la Matiere Condensée is “Unité Mixte de
Recherches du Centre National de la Recherche Scientifique
No. 7643”.

Appendix A: Lattice representation
of transfer across a membrane

A real membrane must be represented by two types of
site, called membrane surface site M, and absorbing site
E (stands for empty), as schematized in Figure 4. The
physical process at the surface is governed by several
dynamics.

— A particle on a bulk site B can jump on a membrane
site M, with jump probability per unit time 1/(47).
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Fig. 4. Lattice gas representation of a membrane process: a
two step modelization of the function of an absorption pro-
cess on the membrane. One has to consider three different
sites: first, sites in the interior of the system (L) with local
concentration of particles C. Second, membrane sites (M) at
the surface of the membrane (with steady state concentration
(1 —0)C). Third, absorption sites (E) (with steady state zero
concentration) corresponding to the passage through the mem-
brane. We thus have an overall flux ¢ = ac/2d¢ in the limits
of our system, in order to keep the steady state in the system.

— A particle on a membrane site M may come back to
a bulk site B, with a jump probability per unit time
1/7, or be annihilated with rate 1/71.

With these definitions, the permeability of the mem-
brane W is given by the average flux per unit time across
a flat membrane of length L by the equation:

P =CyWL (56)

where Cyr is the concentration of the membrane sites.
Given the fact that membrane sites are at a distance a,
we can write the flux as ® = a?Cy\(1/71)(L/a) from which
we deduce

a

W = (57)

1
In the diffusion picture that we used in Section 2, the stick-
ing probability is the relative probability that a particle
having reached a site on M is effectively absorbed. This

relative probability is
-1
1

o= - 58
CREIGE) >

From which using equation (57), we find

()
(=)

W =

REES)

(59)
or,usingo =1—¢:

W =

RS}
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The absorption process takes place really in two steps as
indicated in Figure 4. In steady state there exist three con-
centrations: first Cg in the bulk near the surface and Cy
and Cg = 0. Detailed balance between these populations
can be written in steady state

8CM CM CM C'B
ot Ty T 4T (61)
and
Cs
4T
Oy = . 62
M (r7t +771) (62)
Seen from the bulk the steady state flux is equal to
Cs Cum
d=—-— 63
4T T (63)

and using the value of Cy given by equation (62), one
obtains

CBO'

P = " (64)
This is the expression that was used in the simulations of
reference [10], implying a pseudopermeability of the mem-
brane given by W’ = ga/47 instead of the real permeabil-
ity W = (a/7) 0/(1—0). The real permeability takes care
through the relation of equation (59) between o and 7 of
the possibility for the permeability of the membrane to be
infinite. Even if the permeability of the real membrane is
infinite the transfer through the last line of bulk sites is
finite.

Appendix B: Low and high resistivity limits
in spectral formalism

For a better understanding of the behavior of the resistive
electrode in terms of @-eigenmodes, it is interesting to see
how one can find back the limits for low and high surface
resistivity (already calculated in Sects. 6 and 7). First one
can notice the following identity:

S = C)? = [Bg|? = Y (P

k

(65)

The low surface resistivity limit of equation (53) is simply:

m m
Zspect.(€) ~ rat™? (Z Ci) =r [ Pf,a™!
a=1 7j=1
(66)

One can see that in this limit, the current distribution is
distributed over all the eigenmodes. The sum of all con-
tributions gives the square norm of the primary current
distribution, as showed by equation (65).
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For the high surface resistivity limit, it is useful to no-

tice that one of the eigenvalues (¢, ) of the operator @t is
equal to 1. This eigenvalue corresponds to the eigenvector
u; = 1/||1]|, that represents an homogeneous distribution
on the working electrode. The contributions of all other
eigenvalues vanish then in equation (53) when ¢ goes to 1.
It follows then that:

Zepeer.(€) = rat™t C2. (67)
The contribution C of the eigenvector u; = 1/||1|| to the
normalized primary current distribution P is given by
their scalar product (Pi'*-u;). Since (PP-1) is equal to 1
by definition, the classical limit for high surface resistivity
is obtained by noticing that ||1]|? is simply the number of
sites m of the working electrode:

ro__" . (68)

Zs ect. ~
P ma®1l  Aoge
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